Ertebrate trunk elongation by way of tissue mechanics. Curr Biol. 2013;23:13351. 28. Pulina MV, Hou

March 1, 2024

Ertebrate trunk elongation by means of tissue mechanics. Curr Biol. 2013;23:13351. 28. Pulina MV, Hou S-Y, Mittal A, J ich D, Whittaker CA, Holley SA, et al. Critical roles of fibronectin within the development of your left-right embryonic body program. Dev Biol. 2011;354:2080. 29. George EL, Baldwin HS, Hynes RO. Fibronectins are necessary for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood. 1997;90:30731. 30. McMillen P, Holley SA. The tissue mechanics of vertebrate physique elongation and segmentation. Curr Opin Genet Dev. 2015;32:1061. 31. Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N. An integrated database on the ascidian, Ciona intestinalis: towards functional genomics. Zool Sci. 2005;22:8373. 32. Matsumoto J, Dewar K, Wasserscheid J, Wiley GB, Macmil SL, Roe BA, et al. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates. Genome Res. 2010;20:6365. 33. Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, et al. A webbased interactive developmental table for the ascidian Ciona intestinalis, such as 3D real-image embryo reconstructions: i. From fertilized egg to hatching larva. Dev Dyn. 2007;236:179005. 34. Gutman A, Kornblihtt AR. Identification of a third area of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci USA. 1987;84:71792. 35. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298:21577. 36. Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol. 2011;three:19. 37. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:69715. 38. Denker E, Jiang D. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis. Semin Cell Dev Biol. 2012;23:3089. 39. JosEdwards DS, Kerner P, Kugler JE, Deng W, Jiang D, Di Gregorio A. The identification of transcription factors expressed inside the notochord of Ciona intestinalis adds new prospective players for the brachyury gene regulatory network. Dev Dyn. 2011;240:179305.Segade et al. EvoDevo (2016) 7:Web page 16 of40. Zeller RW, Weldon DS, Pellatiro MA, Cone AC. Optimized green fluorescent protein variants offer enhanced single cell resolution of transgene expression in ascidian embryos. Dev Dyn. 2006;235:4567. 41. Katikala L, Aihara H, Passamaneck YJ, Gazdoiu S, JosEdwards DS, Kugler JE, et al. Functional brachyury binding websites establish a temporal read-out of gene expression inside the ciona notochord.Wnt3a Surrogate, Human (HEK293, Fc) PLoS Biol.BMP-2, Human/Mouse/Rat 2013;11:e1001697.PMID:24883330 42. Persikov AV, Singh M. De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res. 2013;42:9708. 43. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription components. Cell. 2013;152:3279. 44. Hess J. AP-1 subunits: quarrel and harmony amongst siblings. J Cell Sci. 2004;117:59653. 45. Stolfi A, Gandhi S, Salek F, Christiaen L. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development. 2014;141:41150. 46. Corbo JC, Levine M, Zeller RW. Characterization of a notochord-specific enhancer in the Brachyury promoter region from the ascidian, Ciona intestinalis. Improvement. 1997;124:58902. 47. Sasaki H, Yoshi.